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Interval Symmetric Single-step Procedure 1ss2-5p for Polynomial Zeros
(Prosedur Selang Bersimetri Langkah-tunggal 1SS2-5D untuk Punca Polinomial)
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ABSTRACT

We analyzed the rate of convergence of a new modified interval symmetric single-step procedure 1SS2-5D which is an
extension from the previous procedure 1552. The algorithm of 1552-5D includes the introduction of reusable correctors 6 /¥
(i=1,..,n)for k=0. Furthermore, this procedure was tested on five test polynomials and the results were obtained
using MATLAB 2007 software in association with IntLab V5.5 toolbox to record the CPU times and the number of iterations.
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ABSTRAK

Satu analisis dilakukan terhadap kadar penumpuan bagi prosedur terubahsuai selang bersimetri langkah-tunggal 1S2-5D
baru yang merupakan lanjutan daripada prosedur 1552 sebelumnya. Algoritma 1SS2-5D termasuk pengenalan pembetulan
yang boleh diguna semula 6V (i = 1, ..., n) untuk k = 0. Prosedur ini diuji ke atas lima jenis polinomial dan keputusan
diperoleh menggunakan perisian MATLAB 2007 dan peralatan IntLab V5.5 untuk merekod masa CPU dan bilangan lelaran.

Kata kunci: Kadar penumpuan; kemasukan serentak; prosedur selang; punca polinomial; selang langkah tunggal
bersimetri

INTRODUCTION METHODS

Interval iterative procedure for simultaneous inclusion of
simple polynomial zeros were discussed in Aberth (1973),
Alefeld and Herzberger (1983), Gargantini and Henrici

THE INTERVAL SYMMETRIC SINGLE-STEP
PROCEDURE ISS2-5D

(1972), lliev and Kyurkchiev (2010), Kyurkchiev (1998),
Kyurkchiev and Markov (1983a, 1983b), Markov and
Kyurkchiev (1989), Monsi and Wolfe (1988), Petkovic
(1989) and Petkovic and Stefanovic (1986). In this paper,
we consider the procedures developed by Bakar et al.
(2012), Jamaluddin et al. (2013a, 2013b), Milovanovic
and Petkovic (1983), Monsi et al. (2012), Nourien (1977),
Salim et al. (2011) and Sham et al. (2013a, 2013b) in
order to describe the algorithm of the interval symmetric
single-step procedure 1SS2-5D. This procedure needs some
pre-conditions (Theorem 1) for initial intervals X (i = 1,
..., 1) to converge to the zeros xi* (i=1,...,n),respectively,
starting with some disjoint intervals X”(i=1,...,n) each of
which contains a polynomial zero. It will produce bounded
closed intervals which will trap the required zero within a
certain tolerance value.

The forward step by Salim et al. (2011) is modified
by addinga 6 =90/ (i =1, ..., n) (k 2 0) (1(c)) on the
second part of the summation of the denominator (1(d)).
The backward step of this procedure comes from Monsi
and Wolfe (1988). The interval analysis is very straight
forward compared to the analysis of the point procedures
Milovanovic and Petkovic (1983) and Nourien (1977).
The programming language used is Matlab 2007a with the
Intlab V5.5 toolbox by Rump (1999). The effectiveness of
our procedure is measured numerically using CPU time and
the number of iterations.

The interval symmetric single-step procedure 1SS2-5D is
an extension of the interval single-step procedure 1SS2 by
Salim et al. (2011) based on Aitken (1950), Alefeld and
Herzberger (1983), Milovanovic and Petkovic (1983),
Monsi and Wolfe (1988), Nourien (1977) and Ortega and
Rheinboldt (1970). The sequences X (i =1, ..., n) are
generated as follows.

Step 1: x"* = x(*) (Initial intervals). (1a)

Step 2: For k= 0,x" = mid(X""), (i=1,....n). (1b)

Step 3: Let 8 = L (i=1,...,n). (1c)
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(i=1,...,n) (1d)
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Step 5:
X" =94 o nx*.
! ! i-1 1 n 1 !
1+8" +
i ~ x,(k) B Xﬁk,l) “ x,(k) _ Xﬁk,z) _ Sal(k,z)
(i=1,....,n) (le)
Step 6: X©) = x" (k=) (i=1,...,n). (1)

Step 7: If w(X/*') <e, then stop. Else set k =k + 1
and go to Step 2. (1g)

Step 4 is from Milovanovic and Petkovic (1983) and
pointed out without ¢ by Nourien (1977), while Step 5 is
from Monsi and Wolfe (1988).

The procedure 1SS2-5D has the following attractive
features:

The use of 56 instead of 0% as in Milovanovic and
Petkovic (1983) the values 0, g computed for use in Step 4

i-1

are reused in Step 5; the summations 2 ﬁ( =1,... n)

je1 Xi x/

used in Step 4 are reused in Step 5 and 2" = x*?) (k2 0) so
that x**) need not be computed.

THE RATE OF CONVERGENCE OF ISS2-5D

Now we have additional description of the Algorithm 1SS2-
5D regarding the conditions, inclusion, convergent and the
rate of convergence.

Theorem 1: Let p defined by p(x) = Ea,.xi (a,#0).If (i)
p has n distinct zeros xl.* (i=1,..., n'):?xi* IS XI.(‘” and Xi“’)
r\XJ.(O) =@, j=1,...,n;i#]) hold; (ii) 0 ¢ D, I(R)
(D, =1d,, d]) is such that p'(x) € D, (Vxe D(Vxe X",

i’

(i=1,...,n)and

o)l )

holds (where w(X®) < W([ ,(,)’X,(sk)])=xf§)—x5:k) ); (iii) the
sequence {X }(1 = 1,...,n) are generated from (1), then
(iv) (Vk=0) x" e X* cX®(i=1,...,n); (v) X® D XOV >
X025 L with im" =, X© = x7 (k=) (i = 1...0),
and (vi) O, (1ss2-5D, x;") 2 6 for (i=1,...,n).

The proofs of (iv) and (v) are available in Aitken
(1950). Now the proof of (vi) is as follows.

Proof
By Step 4 and Step 5, 3o > 0 such that (Vk = 0),

o sb( ] | ot 3 0 |

(i=1,....n), )

where
wkd=(n-1)oaw X* (s=0,12),

and

) =14

o
e
—
=
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=

and

6(6") (i= 2,...,n).

Suppose, without any loss of generality, that

WO <h<l (i=1,...,n).

=n,...1), 3)

“4)

®)

(6)

(7

®)

€))

(10)

an

Then by inductive argument it follows from (2) - (10)

thatfor (i=1,...,n) (k=0)

L s
w < pe , and wfk’z) <h"

whence by (1f) and (9),
w) < gt (i=1,...,n).

So, (Vk=0), by (4) and (12),

w(X,.(k))s(E)h“m (i=1,...,n), a>0.

(12)

(13)
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TABLE 1. Number of Iterations and CPU Times

Polynomial Degree ISS2 1SS2-5D
n No. of CPU No. of CPU
iterations time iterations time
1 5 2 0.086719 1 0.040234
2 9 2 0.124219 2 0.123438
3 9 1 0.089844 1 0.084766
4 6 2 0.099609 1 0.055859
5 10 2 0.134375 2 0.130078
Let mentioned in Section 2 contribute to less CPU times and
number of iterations.
w) =rlrlax{w(ka))}. (14)
ACKNOWLEDGEMENTS
Then by (13) and (14),

® < (BYe S
W _(G)h (Vk =0).

So, by the definition of R-factor in Monsi et al. (2012),
we have

)}
R(w(k)) =lim sup{(w(k))%f’k)} =lim {(B)ﬂé) h} =h<l1.
k—o k—>o0 o
Therefore, it is proven (as defined in Aitken (1950),
Gargantini and Henrici (1972) and Monsi and Wolf (1988)
that the order of convergence of 1SS2-5D is at least 6 or
0, (iss2-5D,x7)=6,(i=1,...,n).

DISCUSSION AND NUMERICAL RESULTS

We used the Intlab V5.5 toolbox by Rump (1999) for
MATLAB R2007 to get the following results below as
computed by Jamaludin et al. (2013a). The algorithms
ISS2 and ISS2-5D are run on five test polynomials where the
stopping criterion used is w® < 10'°. Test Polynomial 1
was from Alefeld and Herzberger (1983), Test Polynomial
2 was from Salim et al. (2011), Test Polynomial 3 was
from Monsi and Wolfe (1988), Test Polynomial 4 and Test
Polynomial 5 were from Monsi and Wolfe (1988).

Table 1 as computed by Jamaludin et al. (2013a) shows
that the procedure 1SS2-5D required less CPU times than the
procedure 1SS2 for all five test polynomials, and required
less number of iterations meaning ISS2-5D converges faster
than 1SS2. However, for test polynomials 2, 3 and 5, the
number of iterations for both procedures is the same, but
the time consumed for procedure 1SS2-5D is still less than
the 1SS2 procedure.

CONCLUSION

The above results have shown analytically in Section 3 that
1SS2-5D has faster rate of convergence of at least 6, whereas
the R-order of convergence of 1SS2 Salim et al. (2011) is
atleast 5. Thus, we have this relationship Q (1552 - 5D, x*)
> O, (1ss2, x"). The attractive features of our procedure

We are indebted to Universiti Kebangsaan Malaysia for
funding this research under the grant PMT-1.
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